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Dynamical cascade models for Kolmogorov’s inertial flow 

By JON LEE 
Flight Dynamics Laboratory, Wright-Patterson AFB, Ohio 45433 

(Received 5 March 1979) 

To resolve possible fluctuations about the mean motion of the Desnyansky-Novikov 
model for Kolmogorov’s inertial flow, we have investigated two dynamical systems of 
the cascade process which are formally derivable from Burgers’ equation. The first 
cascade model produced no fluctuations, for its trajectory was identical with the 
Desnyansky-Novikov model’s. Disappointingly, the second cascade system, which 
is similar to the Kerr-Siggia model, has also proved unable to engender fluctua- 
tions. This is because the second model when truncated consistently maps an arbitrary 
initial point into the attainable phase space of the first cascade model. However, 
when truncated inconsistently the trajectory of second model can exhibit a quite 
erratic and somewhat sporadic motion, thereby reflecting the apparently random 
motion of inviscid equilibrium solutions. Therefore, the observation of temporally 
intermittent fluctuations by a stationary Kerr-Siggia model is due to the inconsistent 
truncation produced by restricting energy dissipation for all but the upper truncation 
mode in their model. 

1. Statement of the problem 
To provide some theoretical justification for Kolmogorov’s inertial flow, Desnyansky 

& Novikov (1974a,  b )  proposed a dynamical model for the underlying cascade process 
that can correctly reproduce the -#  spectral law. Since the velocity field will be 
assumed spherically symmetric in statistical sense, it suffices to consider here the 
energy spectrum E ( k )  of isotropic turbulence. Suppose that we inscribe in the three- 
dimensional wave-vector u’pace a sequence of spherical shells, the radii of which 
increase successively by twofold. To be specific, for a given wavenumber k we introduce 
the spherical shells of radii, .. ., k / 2  J2,  k / J 2 ,  J 2  k ,  2 J2 k, ... We then define the 
average modal energy 

The average energies 
shells of radii k / 2  J2 
Desnyansky-Novikov 

+w2(k) over the adjacent shells of radii k /  J 2  and J 2  k by 

&v2(ik) and 4w2(2k) are defined similarly over the adjacent 
and k l J 2 ,  and of radii J 2  k and 2 J 2  k ,  respectively. The 
model takes into account only the interaction of w(k)  with 

v ( k l 2 )  and v ( 2 k )  as follows; 

(1 .2 )  

Here v is the kinematic viscosity, y measures the strength of quadratic interactions, 
the yet unspecified P ( k )  corrects for shell-averaged damping, and F(k)  is the energy 

(a/%?+ v p ( k )  k 2 )  v (k)  = yk[w2(k /2 )  - 2v(k)  v ( 2 k ) ] +  F ( k ) .  
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input term (see Bell & Nelkin 1977, 1978 for extensions of model (1.2)). Suppose that 
P(k)  acts on the very small k, whereas energy dissipation takes place predominantly 
in the very high wavenumber range, for v is assumed small. Then, in the intermediate 
k range it is found that (1.2) can equilibrate toward a steady state v N k- i ,  which 
satisfies v2($k) - 2v(k) v(2k) = 0. Hence, the equilibrium energy distribution is of the 
form 

v2(k) - k-3. (1.3) 

Since this implies E(k)  - k-* by definition (1 .  l), it was claimed that (1.2) is a dynamical 
cascade model for Kolmogorov’s inertial flow. Although it is gratifying to recover the 
-$ spectral law by a simple model such as (1.2), the achievement of the Desnyansky- 
Novikov model is in our opinion a fortuitous accident. This is because, in spite of some 
recent attempts by Siggia (1977, 1978), the cascade model (1.2) is not derivable from 
the Navier-Stokes equations; hence the nonlinear terms have been constructed 
heuristically by requiring (i) quadratic nonlinearity, (ii) scale invariance to dimension- 
less coefficients, (iii) direct coupling of the closest neighbouring modes and (iv) energy 
conservation. 

Instead of invoking the aforementioned requirements, one can formally derive the 
cascade model (2.9) which has an equilibrium energy distribution of the form (1.3) 
(see $ 2). Although (2.9) has the same form as the Desnyansky-Novikov model, they are 
by no means identical; they describe in fact two different processes. On the one hand, 
(1.2) refers to modal energies averaged over the two adjacent shells; hence Kolmogo- 
rov’s spectral law follows a t  once by invoking definition (1 .1 ) .  On the other hand, (2.9) 
refers to the actual cascade process itself. Consequently, an ensemble of realizations 
(2.9) would represent the mean motion of the Desnyansky-Novikov model. Viewed 
as description of a realization, one cannot therefore deduce from (2.10) the -$ 
spectral law because (1 .1)  is no longer operative. A way around this difficulty was 
suggested (J. Lee 1971, unpublished note: Kolmogorov’s similarity law of the inertial 
subrange spectrum) by heuristically introducing a factor a-l into (2.10), which is 
the usual procedure for converting a plane wave to the three-dimensional spherical 
wave. This issue aside, the real motive for investigating (2.9) as a cascade process is 
to uncover possible fluctuations which might have been averaged out in the Desnyan- 
sky-Novikov model. Although such a hope is not realized by (2.91, the dynamical 
cascade equations when generalized to the complex mode appear to have sufficiently 
complicated trajectory behaviour to create random fluctuations about the Desnyan- 
sky-Novikov model. 

With this in mind, Kerr & Siggia (1978) have recently proposed the complex exten- 
sion of (2.9). Clearly, the cascade model (3.1) with complex modes is richer in dynamical 
properties than the real-mode counterpart (2.9). In the inviscid limit, (3.1) is measure- 
preserving. Further, it  has only two isolating constants of motion: energy and a cubic 
constant of motion h (see $ 3.1). For a given energy, h can take any value from zero 
to a maximum. It has been shown that the maximum and zero h give rise to the in- 
variant sets .u?, and Yo, respectively ($3.2) .  First, 9, is a trivial equilibrium point 
which can never be attained from any other points in the phase space. The second 
invariant set Yo is relevant to the discussion of this paper; it  represents the attainable 
phase space of dynamical system (2.9). 

As a preliminary, we have investigated truncated systems of inviscid model (3.1), 
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which is identical to the inviscid Ken-Siggia model, on a constant energy and h 
surface ($4) .  It is very surprising to note that, as the dimension of truncation is in- 
creased from 3 to 4, the motion of the inviscid Kerr-Siggia model suddenly changes 
from periodic or quasi-periodic to non-periodic. Then the non-periodic trajectory 
becomes more and more random as the order of truncation is increased. In fact, the 
random trajectory of higher-order modes almost develops mixing in phase space, 
whereas the lower-order modes undergo a gradual but somewhat sporadic non- 
periodic motion. Therefore, a layered structure of the inviscid Kerr-Siggia model 
emerges. Slowly evolving big eddies (lower-order modes) coexist with small eddies 
(higher-order modes) ; the trajectory of these eddies becomes progressively more 
chaotic with the decreasing eddy size. What is apparent here is the decrease in charac- 
teristic time with the decreasing eddy size. In the inviscid case, all modes participate 
energetically as evidenced by energy sharing of the time-averaged modal energies. 

The knowledge of inviscid equilibrium solutions is not at  all unproductive. On the 
contrary, it permits us to resolve the problem of inconsistent truncation, when 
the cascade model (3.1) is held stationary by injecting energy at the same rate as the 
energy dissipation. Although (3.1) is an unclosed system, based on a Kolmogorov 
dissipation length scale one may choose an upper truncation wavenumber so large 
that the contribution of all truncated modes is negligible. Such a truncation is said 
to be consistent. The consistently truncated model (3.1) has a very surprising long- 
time behaviour. It evolves an arbitrary initial point into the invariant set Yo ($5.2). 
In other words, the equilibrium state of (3.1) is identical to the steady equilibrium 
point of (2.9), which is (1.3). Now, if the truncation wavenumber is smaller than a 
Kolmogorov dissipation wavenumber, the viscous effects are grossly inhibited so that 
the equilibrium state will be dominated by inviscid solutions (Orszag 1977). Indeed, 
the trajectory of an inconsistently truncated (3.1) exhibits the apparently random 
motion of inviscid solutions superimposed on the otherwise stable (non-random) 
motion of the invariant set yb (4 5.2). Kerr & Siggia (1978) have observed that their 
model can develop temporally intermittent fluctuations about the mean motion of 
the Desnyansky-Novikov model. We believe that such an observation is the direct 
consequence of inconsistent truncation, whereby only the upper truncation mode is 
allowed to dissipate energy by an artificial eddy damping. 

2. The cascade model with real modes 
We begin with Burgers’ equation 

aulat + auZ/ax - v a2ulaXZ = o (2.1) 

in the spatial interval of [0, L]. For a flow field satisfying the boundary condition 
u(0) = u(L) = 0, one can introduce 

W 

u(x, t )  = 2 ga(t)  sin (anxlL), 
a = l  

into (2. l ) ,  thereby extracting the infinite set of Fourier amplitude equations 
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It will be shown that the quadratic terms can be separated into two dynamical pro- 
cesses, the unidirectional energy transfer and triad energy exchange (§ 2.1). The 
cascade model is then a typical representation of the unidirectional energy flow 
process (9 2.2). 

2.1. ClassiJication of nonlinear processes 

We shall now suppress the viscous term. The structure of the quadratic terms can be 
exhibited most clearly by rearranging the right-hand side of (2.2) under L = 7~ as 
follows, 

()=;[(7)+(!if2)+( - 4t1 :; t3 - 2ti  )+..I 
Q{*1+@2+*3+ a * . } ,  (2.3) 

where the dot denotes a/&. Since each of the column vectors 0, is orthogonal to the 
vector ( f l ,  t2, t3, , . .), a truncation that excludes any (but not all) of 0, will conserve 
its energy. 

The unidirectional energy transfer. The lowest-order truncation excludes all but 0, : 

By the transformation t1 = exp(+y) and t2 = z (I am indebted to Henry Fettis for 
this), (2.4) gives rise to an equation of the Emden type, d + 4 exp (y) = 0 (Kamke 
1943, p. 562). Hence the solution satisfying the energy conservation €J + (2 = 1 is 

El = sech [Q(t - to) ] ,  t2 = - tanh [Q(t - to)]. (2.5) 

Here the constant to is chosen to satisfy the initial condition. Since Cf = 0 and = 1 
as t + co, (2.4) describes the eventually complete transfer of the first-mode energy to 
E 2 .  Hence, the term ‘unidirectional energy transfer’ is justified. 

The triad energy exchange. The three-mode interaction is exhibited by including 
only a2 in (2.3), 

The solution can be expressed by the Jacobian elliptic functions 

tl = S t Z t 3 ,  t 2  = tlt3’3, 6 3  = -%-1t2* (2.6) 

El = alcn[h(t-to),~], f12 = a,dn[h(t-t,),~], t3 = -a3sn[h(t-t0),~], (2.7) 

where to is the initial time. The constants are related by Zag = K%: = $at = ala2a3/h, 
and a:+ai = 1 due to the energy conservation. If the modulus K turns out to be 
greater than 1, then by the reciprocal modulus transformation (Byrd & Friedman 
1954, p. 38) we can write the alternative form t1 N dn, t2 N cn, and c3 N sn with the 
corresponding modulus less than 1. Since the Jacobian elliptic functions are periodic, 
(2.6) represents the three-mode (triad) energy exchange under + 6; + = 1. 
Although Lorenz (1960) appears to be the first to have discussed the triad system 
(2.6) in connexion with fluid dynamics, it  is essentially Euler’s equations for a rigid 
body moving with one point fixed under no external forces. (Lamb (1943, p. 123) has 
given credit to St. A. Reub (1834) for the analytic solution (2.7).) 
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Summing up, (Pl represents the unidirectional flow of energy from El to 5,) which 
will be denoted by El=. g,. On the other hand, 9, describes the periodic energy 
exchange among el, c2 and c3. One can readily interpret the remaining vectors 9, 
in terms of the two dynamic processes. For instance, (P3 represents c, => c4 and a triad 
energy exchange among el, .&, and c4. And 0, represents the triad energy exchange 
between el, c4 and c5 coupled to another one between &., t3 and c5. 

2.2. The cascade model 

It is strongly suspected that by sequentially coupling El + t2 and 6, + c4 the first- 
mode energy might all be transferred to &. The dynamical equations for such a 
sequential energy flow el + E2 + c4 is 

‘$1 = ill 629 5 2  = - c 2  64)  (4 = - !%. (2.8) 
A numerical solution of (2.8) has indeed confirmed this suspicion. As shown in figure 1, 
the initial energy 6; = 1 eventually becomes transferred to c4 but with the ephemeral 
excitation of c2. Expanding (2.8) to include c 4 3  fa and ga* Ela and so on, we obtain 
the dynamical equations of the cascade process as follows : 

(2.9) I 51 + V E l  = & + it-1 (2, 

5 2  + V2252 = Q ( - E i  + 2c2c3)3  

‘$3+v42c3 = --5;+2c31349 

[n + v(zn-l12 en = 2n-3( - ti-.1+ 2En tn4.1) (n 2 2). 

The following comments are in order. (i) We have redefined f (a = 1,2 ,4 ,8 ,  ...) by 
en (n = 1,2 ,3 ,  ...), the relabelling relation being a = 2%-l. (ii) Since we let L = n, a is 
the wavenumber. (iii) The viscous term has been reintroduced. Otherwise, the equili- 
brium solution of (2.9) is simply the piling up of all modal energies on the upper trun- 
cation mode. (iv) Finally, in the first of (2.9) the term cf/cl is the analytical statement 
that energy is being fed into the first mode a t  the rate ef (Kerr & Siggia 1978). 

Let us define a dissipation wavenumber in terms of Kolmogorov’s length scale by 
ak = (e,/v3)*, where E,, is the energy dissipation rate. Introduce an upper truncation 
limit n, with the corresponding wavenumber at = 2nt-1. If n, is so large that a, % ak, 
the truncated modes will all lie in the wavenumber range of strong dissipation so that 
their contribution can safely be ignored. Such a truncation will be said to be consistent. 
In  the opposite case of a, < ak, however, the viscous effects are grossly inhibited 
(Orszag 1977). Hence, an inconsistent truncation will falsely identify the inviscid 
solution (i.e. the piling up of all modal energies on the tnt) with the stationary equili- 
brium state of (2.9). Suppose now that (2.9) is truncated consistently. Since energy is 
continually introduced into c1 (the largest eddy) and since energy is dissipated mostly 
by the higher-order En (smaller eddies), (2.9) can simulate the cascade flow of energy 
down the eddies, which decrease in size successively by half. It is known that (Lee 
1971, unpublished note; Desynansky & Novikov 1974a) equilibration is possible for 
the eddies not directly affected by the energy input and viscous damping. Since (2.9) 
reduces to gn = P - 3 (  -ct-l+ 2tncn+,) for 2 < n < n,, the steady-state solution is 

or, in the original variables, we have 
en = c12-*n, 

6, = c2a-+, 
I2 F L M  I01 
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1 

r: 4 

0 
Time t = 30 

FIGURE 1. Modal energies of (2.8) evolved from the initial condition [I = I and Ee = E4 = 0; note 
that 1, 2, and 4 refer to the subscript a. (The unidirectional energy transfer is very slow; only 
99 % of total energy is transferred to [* at t = 200.) 

where c1 and c2 are constants. Hence, the equilibrium modal energy distribution obeys 

(2 - a+. (2.10) 

Although v does not appear explicitly, (2.10) is indeed a viscous solution. Note that v 
dictates the wavenumber range in which (2.10) is valid, which extends farther as v 
becomes small but not zero. In  the inviscid case ( v  = 0) ,  however, (2.10) is no longer 
valid; the corresponding equilibrium state is the inviscid solution. (The dynamical 
difference between the limit as v --f 0 and the inviscid case has been discussed by 
Orszag (1977).) 

The stability and attainability of (2.10) have been checked out by directly integrat- 
ing (2.9) under nt = 11 and v = 1 x 10-4. Since ef necessary for equilibration is not 
known a priori, a practical procedure is to boost t1 at the end of each integration time 
step to maintain 

n= 1 

The ratio of energy injected to the time step is then ef. Figure 2 (a) demonstrates two 
things: In the first time range (0 < t < 15), the initial condition 

Il = {El = 1,Cn = O ( 2  < n < 11)) 

develops rapidly into the equilibrium energy state. In  the second time range 
(15 < t < 30), however, this equilibrium state is shown to re-establish after having 
perturbed the three modes a t  t = 15 as follows. The C3 and t5 are reduced by 30 % 
and 50 %, respectively, but c4 is increased to maintain 

As expected, in equilibrium ef is equal to the energy dissipation rate computed by 

11 

n=l 
E” = 2v 22(n--I)Ei. 

Using ef = E” N 0.183, we find that the Kolmogorov ak 2: 65.4 is well below the 
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truncation at = 1024; hence the present truncation is certainly consistent. The equili- 
brium energy distribution shown in figure 2 ( b )  obeys the - 8  power form up to 
n = 7 (a  = 64), beyond which the viscous dissipation is significant. Numerical experi- 
mentation has shown that (2.10) is attainable from an arbitrary initial condition 
with El + 0. 

We wish to point out that (2.9) is but one of infinitely many cascade models em- 
bedded in Burgers’ equation. For instance, the second model is 

and the remaining cascade models are constructed by commencing from the modes 
6 , 9  511’ etc. 

3. The cascade model with complex modes 
Recently, Kerr & Siggia (1978) have proposed the complex extension of (2.9), 

which is obtained by introducing into Burgers’ equation the Fourier expansion 
appropriate for cyclic boundary conditions 

03 

u(z, t )  = u,(t) exp (2ianz/L). 
a =  --m 

12-2 
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c Slope =3 

a \  

a 

10-6 I 
1 b I I I I 1 I I 1 1 
1 2  3 4 5 6 7 8 9 10 11 

n 

FIGURE 2. Evolution of (2.9) from the initial condition .Il under nk = 11 and v = 1 x 
(a )  Development and re-establishment of the equilibrium energy state. At t = 15, 6, and tj are 
decreased by 30 % and 50 %, respectively, and E, is increased to maintain 6: = 1. (b)  Equi- 
librium modal energies a t  the final time ( t  = 30). 

The reality requirement demands that u,*(t) = u-,(t). Patterning after (2.9) the 
cascade model with complex modes becomes 

ti, + uul = €+:- iu: u2, 

ti,+ u42u, = -i2(U% + 2u*,u,), 

U , + Y ~ ~ U ~  = -i(u;+2u*,u3), 

in + v(2,-')2 u, = - i2"-2 ( ~ n - , + 2 u ~ u n + l )  (n > 2).j  

Although (3.1) shares the same nonlinear terms with the Kerr-Siggia model (equations 
(13) in Kerr & Siggia 1978), there are two differences. The first is a minor one: the 
constant factor for the nonlinear terms in (3.1) differs from that of the Kerr-Siggia 
model by -2 .  The second difference, however, has a very important implication. 
The viscous terms u(2"-1)2u, are the natural ones arising from Ya2ulax2  in (2.1). In  
contrast, the Kerr-Siggia model relegates all viscous dissipation only to the upper 
truncation mode via an artificial eddy-damping term. This will therefore restrict the 
natural flow of energy towards the Kolmogorov dissipation range. These differences, 
however, disappear in the inviscid flow case to be discussed in this section. 



Cascade models for Kolmogorov’s inertial $ow 357 

3.1. Inviscid invariants of motion 
Prior to investigation of (3.1), it  behooves us to examine the inviscid dynamics under 
no external excitation (v = ef = 0). Since it makes no sense to discuss (3.1) in its 
entirety in the inviscid case, we shall truncate it a t  n,: 

(3.2) i ti, = -iu*,u,, 

tint = -i2S-%&,. 

ti, = - i p - 2  ( ~2 n-1+2ugun+l) ( 2  < n c nt), 

First, this system conserves energy which for convenience is normalized as 

Second, as pointed out by Kerr & Siggia (1978), there is a cubic constant of motion 
nt-1 

h = Re(u:uz+,). 
n = l  

Finally, (3.2) preserves measure under the time evolution because 

where u, = uL+2.uk. Hence i t  obeys the classical Liouville theorem. 

Much can be learned by simply recasting (3 .2)  into the action-angle representation. 
Let us introduce u, = R,exp (i27rwn) into ( 3 . 2 ) ,  and separate out the real and imagi- 
nary parts 

where Q, = 
angle w,, (3. 
in the phase 

- 2w,. Since each mode u, is represented by the amplitude R, and 
,3) describes the nonlinear dynamics of n, oscillators or rotating vectors 
space of Re (u,) vs. I m  (u,). The energy conservation 

nt 

n = l  
J,=1 

is expressed by the action J, ( = R:), and the cubic constant of motion becomes 
nt-1 

n= 1 
h = 2 R:R,+, cos (2nl2,). 

A, = R,R, sin (27rQ,), 
A, = - Rq sin ( 2 n 4 )  + 2R, R, sin (2nQ2), 

A, = - 2Rg sin (2nQ,) + 4R, R, sin (27r!2,), 

A, = - 4Rg sin (277Q3) + 8R,R,sin (2nQ4), 

2nh, = (2R, - R!/R,) cos (2762,) - 2R, cos (2nQ2), 

2120, = 2R:/R, cos (27rSt,) + 2(2R, - R$/R,) cos ( 2 ~ 0 , )  - 4R4 cos (2nQ,) 

27rh3 = 4Rg/R, cos (2nQ2) + 4(2R, - Rg/R4) cos (2nS13) - 8R, cos (2nQ4) 

(3.3) 



358 J .  Lee 

Now, the two invariant sets of (3.3) can be deduced as follows. For thefirst,suppose 
that initially we choose w, such that Q, = & 4, & 2, . . .. It is then evident that on will 
remain invariant because not only 0, = 0 but also h, = 0 for all t .  Since 

sin (2n0,) = 1, 

the R, equations of (3.3) degenerate to the cascade model (2.9) (with 6, = v = 0). 
We shall denote this invariant set by Yo, the zero subscript signifying h = 0 for such 
w, : 

Yo = {R, satisfying the cascade model (2.9), and w, such that Q, = & 4, & f, & 2, . ..>. 
(3.4) 

Although (3.4) has been defined in the context of v = .sf = 0, it turns out that an 
invariant set defined exactly as Yo but with v $: 0 and 6, $: 0 plays an important role 
in 9 5 .  We shall therefore represent by (3.4) both of these cases; however, no confusion 
arises as to which of the two cases is referred. The second invariant set is a trivial 
equilibrium state. Initially, we choose w, such that Q, = 0, & +, & 1, ... and also 
choose R, such that the right-hand sides of Q, equations are identically zero; i.e. 

2R2 - R:/Rz - 2R3 = 0, 

R!/Rz -I- 2R3 - Rz/R3 - 2R4 = 0,  

Rg/R3 + 222, - Rg/R4 - 2R5 = 0, . . . . 
(3.5) 

It is evident that such a state will persist, for A, = h, = 0 for all t .  Since h then takes 
the maximum value, this invariant set will be denoted by the subscript m, 

(3.6) 

The existence of Yo and SP, establishes the two isolated equilibrium states, correspond- 
ing respectively to the zero and maximum h. Between the two limiting values of h, 
however, the trajectory of (3.3) can develop a random motion, as we shall explore in 
the next section. 

Ym = {R, constrained by ( 3 4 ,  and w, such that Q, = 0, & i, & 1, ...>. 

4. The random motion of truncated inviscid systems 
The polar representation (3.3) is not amenable to numerical integration because of 

the reciprocal factors R;l which appear ubiquitously in the !2, equations (Lee 1979). 
Hence, we shall integrate the system (3.2), even though dynamical results are dis- 
cussed alternately in action-angle variables. We denote by D(n,) the system (3.2) 
truncated a t  n, and, beginning with D(2),  several of the lower-order truncated systems 
will be investigated here to show the emergence of random trajectories as n, is 
increased. 

4.1. The D(2)  system 
This system is given by 

A, = R,R,sin (277Q,), 2, = - R2,sin (27rQ1), 
2nh1 = (2R,- R2,/Rz) cos (2nQ1). (4.1) 

The constants of motion are J1 + J, = 1 and h = R; R, cos (2774). For the invariant 
set Yo, the equations for R, and R, are equivalent to (2.4). On the other hand, Ym 
demands that 

RJR, = 23. (4.2) 
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Final 

1 

0.604 

0 
Time r = 20 

FIGURE 3. Evolution of D(2)  from the initial condition R, = (+$, R, = (8)8, o1 = 4, and w,  = Q; 
-, action; ---, time-averaged action. 

For the general solution, let us square both sides of the R, equation to obtain 

(I?,), = Rb - 2Rg + 1 - h2/Rg 

with the use of the constants of motion. I n  action J,, this gives rise to a differential 
equation 

satisfied by the Weierstrass elliptic functions. By a linear transformation J, = 
we then obtain the normal form 

&(J2)2 = J t  - 2Ji + J, - h2, 

(&)z = 4 ( 9 - e 1 )  ( P - e , )  ( 9 - e 3 ) .  

Here the three roots are 

el = Q cos (&5), e2 = $ cos (iqi + 120"), and e3 = $ cos (44 + 240"), 

where qi = cos-l (27h2/2 - 1). Suppose that the roots have been arranged 
el 3 e2 3 e3. Then the general solution for our problem is (Davis 1962, p. 157) 

9 = e 3 + ( e , - e 3 ) s n 2 [ h ( t - t 0 ) , ~ ] ,  

where h2 = el - e3, K, = (e, - e3)/(e,  - e3), and to is the initial time constant. 
To establish contact with the invariant sets, let us first examine the h = 0 case. 

Since el = e2 = 4 and e3 = - 8, (4.3) degenerates to 9 = - + + tanh2 (t - to) (because 
K = 1 )  or J, = tanh2(t-to), thereby recovering the previous result (2.5). I n  the 
opposite case of the maximum h = 2/2/27, we find that el = Q and e2 = e3 = - 6 ;  
hence 9 = - 8 or J, = + in agreement with (4.2). I n  general, J, (and/or J1) is periodic 
because of the elliptic sine. As an example, consider the mid-value of h2 = &, for 
which el = 3-4, e2 = 0, and e3 = - 3 4 ;  hence 

J2 = 9 ( 2  - 34) + 3-4 sn2 [h(t - t o ) ,  K ] ,  

where h2 = 2/34 and K~ = 4. Figure 3 gives the numerical result of evolving 012)  from 
the initial condition, R, = (+)&, R, = ( Q ) * ,  w, = i, and w, = 3, which gives exactly 
h2 = &. The periodic J, conforms to the analytic solution if to is chosen as the quarter 
period of sn. In  particular, the maximum and minimum of J, are found to be Q and 
4(2 - 34) N 0.089, respectively. Further, since the peaks (or troughs) of J, appear every 
t 2i 3-45 in the figure, one may estimate the half-period h x 3.45 N 3-71, agreeing 
closely with the tabulated value of 3.7082 by Davis (1963, p. 176). 
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FIQURE 4. Actions of D(3) evolved from the initial condition I@). 

Although patterned after (2 .4 ) ,  the system D(2) does not at all exhibit uni- 
directional energy transfer. In  fact, it is energy-sharing because the time-averaged 
actions 

&(t)  = - x J,(s)ds, (4 .4)  

are of comparable magnitude, as shown in figure 3.  (Note that the long-time- 
averaged actions are the same for all trajectories with the same h, since they differ 
only by the constant to.) 

4.2. The D(3)  system 

The invariant set Yo of this system is precisely the unidirectional energy transfer 
model (2.8). Now solving the first two equations of (3.5) with R, suppressed, we obtain 
R, = R, = 2R, for the invariant set Yrn. Note that the equilibrium modal energy dis- 
played in figure 2 of Kerr & Siggia (1978) is exactly that of 9,. For a typical trajectory, 
we have evolved D(3) from the initial condition I(,) which is defined by 

I(m) = {R,  = m-* and w, = +, for n = I, ..., m>. 

Since the time histories of J, depicted in figure 4 are periodic, it  is tentatively 
concluded that the present system has in general a periodic motion. 

4.3. The D(4)  system 

For the invariant set Yrn of D(4) we must solve (3 .5 )  with R, suppressed. In  terms of 
R,, we find that R, = R2(3 T 5*)*, R, = +R,( - 1 f 5*), and R, = &R,( - 1 & 5f)2. The 
upper signs correspond to the equilibrium modal energy given in figure 2 of Kerr & 
Siggia (1978). 

To exhibit typical trajectory behaviour, D(4)  has been evolved from the initial 
condition 3 s ;  the result is presented in figure 5. First of all, the phase plots of Re (u,) 
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FIGURE 5(a,b). For legend see next page. 
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ws. Im (un) shown in figures 5 (a, b )  develop quite an erratic pattern. Although both 
figures 5(a, b )  contain trajectories of the same evolution time, the latter is more 
heavily traversed than the former because the characteristic time scale of u3 is about 
an order of magnitude less than that of u1 (see table 1) .  To suppress the effect of angle 
variables, we have presented in figure 5 ( c )  the time histories of J,, which clearly 
indicate that the motion is non-periodic in the evolution time of the figure. 

It is indeed surprising to find that, going from n, = 3 to 4, the trajectory has suddenly 
changed from a periodic to nonperiodic motion. This change may further be illustrated 
by the trajectory flow on a constant energy surface 

nt 
R E = I .  

n= 1 

On the energy sphere R:+Rg+R," = 1, the trajectory of D(3) can be parametrized 
by the polar and azimuthal angles (Lee 1979) 

6123 = t a r 1  (R1/R2),  [is3 = tan-l ( R J R 3  COB 0123). (4.5) 

When no isolating constant of motion exists besides energy, the trajectory flow will 
wander freely on the energy sphere; hence, the plot of el,, vs. [123 would completely 
fill in the square with side (in a numerical sense), since R, > 0. Because of the cubic 
constant of motion h, this cannot however be so. In  fact, as shown in figure 6, the 
trajectory flow of D(3)  is not only restricted to part of the energy sphere, but also 
stream-lined consistently with the apparent periodicity. Unfortunately, it is impossible 
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0 0 123 4. 
FIGURE 6. Trajectory flow on the constant-energy sphere of D(3) evolved from 

the initial condition PJ (evolution time = 100). 

I I 

0 6 123 :I 

FIGURE 7 (a). For legend see next page. 

to decide from figure 6 if the motion is periodic or quasi-periodic. Hence, the trajectory 
of D(3)  will be vaguely referred to as a periodic or quasi-periodic motion. As we now 
examine D(4) ,  the constant-energy surface is of dimension 4 ,  yet one can sample 
three-dimensional projections of it by the polar and azimuthal angles defined similarly 
to ( 4 . 5 ) .  From the three-dimensional projections of figure 7, it is evident that the 
trajectory of D(4)  flows more freely on the energy surface than D(3) .  Owing to the 
presence of h, however, one cannot infer from figure 7 if D(4)  is ergodic or not because 
the entire squares with side in are not accessible. Hence, the question of ergodicity 
will be approached by the decay propefty of the time-correlation functions of u,, 
which will presently be carried out for D(6) .  
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0 8 7.34 +t 

FIGURE 7. Trajectory flow on the constant-energy surface of D(4) evolved from the initial con- 
dition I(4) (evolution time = 140). (a) Two-dimensional projection of Olzs vu9. ties. ( b )  Two-dimen- 
sional projection of &, vs. &,,. 
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FIGURE 8. Actions of D(6) evolved from the initial condition P I .  

4.4. The D(6) system 

Omitting the D(5) system, we shall investigate here in detail the dynamical model 
D(6),  the trajectory of which is quite random and thereby typifies a higher-order 
truncated system D(nt) for n, > 6 .  As shown in figure 8, the higher-order J, fluctuate 
very rapidIy and randomly in a time range in which J1 has evolved 8 gradual but some- 
what sporadic non-periodic motion. In  any event, it  is more meaningful to examine the 
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FIGURE 9. Time-averaged actions of D(6) evolved from the initial condition I@). 

365 

FIGURE 10(a,b). For legend see next page. 
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FIGURE 10. Autocorrelations of Re (u,) of D(6) evolved from the initial condition I@)for the total 
evolution time T = 200. ( a ) p (  1 , 2 0 0 , ~ )  ; (b)p(2,200,7);  (c)p(3,200,7);  (d) p(4,200,7);  (e) ~ ( 5 , 2 0 0 , ~ ) ;  
(f) ~ ( 6 , 2 0 0 , ~ ) .  
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12 1 2 3 4 5 6 
Characteristic time 26.67 6.93 2.85 1.36 0.70 0.36 

TABLE 1. Characteristic correlation times of the system D(6).  

time-averaged actions computed by (4 .4) .  Figure 9 shows that J, settle down to 
steady-state values after a long evolution time (t = 200). Furthermore, they exhibit 
a good measure of energy-sharing among all six modes. 

The degree of randomness may be quantified by an autocorrelation of the type 
defined by Kells & Orszag (1978) 

which satisfies p(n ,  T, 0)  = 1. (Although the time correlations for I m  (u,) can be de- 
fined similarly, they exhibit more or less the same decay behaviour as p(n, T, 7), 
and hence will not be considered here explicitly.) Taking the evolution time T = 200 as 
sufficiently long, we have computed autocorrelations from the trajectory of figure 9. 
All correlations (figure 10) first fall off rapidly but then undergo oscillations without 
damping out completely. Hence, in general the motion of D(6)  is quite random, but 
not sufficiently so to be mixing in phase space (Lebowitz 1972). I n  particular, the 
oscillation amplitudes are quite small for p(5, T, 7) and p(6 ,  T, 7). Hence, the motion 
of higher-order u, is almost mixing, although the motion of lower-order modes is 
far from it. A quantitative estimate of characteristic times can be obtained from the 
oscillations, as shown in table 1. In  comparison to characteristic correlation times, it 
is inferred that T = 200 is indeed a long evolution time for all but p(1 ,  T,7). It is a 
well-known fact (Monin & Yaglom 1975, p. 340) that in fully developed turbulence the 
characteristic time scale of a typical eddy decreases with decreasing eddy size. The 
present cascade model indeed supports this : the characteristic time decreases roughly 
by half as n ( 2  2) is increased by one. In  other words, by halving (doubling) the eddy 
size (wavenumber) the characteristic correlation time is halved. Hence, the dynamical 
model D(n,) is numerically a stiff differential system with widely varying time scales 
(Lapidus, Aiken & Liu 1974). 

Summing up, going from n, = 3 to 4 the trajectory of D(n,) changes abruptly from 
periodic or quasi-periodic to non-periodic. The non-periodic motion of D(4) is only 
modestly chaotic. As n, is further increased to 6 and larger (the results of D(9)  will 
not be presented here), the random motion of higher-order un almost becomes mixing, 
although the non-periodic motion of lower-order u, does not. The motion of D(n,), 
therefore, has a layered structure in that big eddies (lower-order u,) evolving slowly 
but sporadically coexist with a sequence of small eddies (higher-order u,) which 
undergo more rapid and chaotic fluctuations with the decreasing eddy size. In the 
present inviscid case, all modes participate energetically, as exhibited by energy- 
sharing of the time-averaged actions. (This should, however, be distinguished from 
energy-equipartitioning, which calls for the mixing property.) 

Although we have thus far restricted ourselves to one type of initial conditions 
Pr), the dynamical conclusions remain valid for other arbitrary initial conditions. 
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Time t = 4000 
n =  1 

-12 _1 (C) 

FIGURE 11. Free-decay dynamics of (3.1) evolved from the initial condition I, under nt = 6 and 
Y = 1 x 10-3. (a) Actions for n = 1 ,  3 and 6; (a) angles for n = 1, 3 and 6; (c) long-time evolution 
of the angles. 

There is, however, one exception: a class of initial conditions defined by 

I, = {R, = 1, w, = arbitrary, and R, = w, = 0 ( 2  ,< n < n,)] 

gets mapped into the invariant set Yo (appendix). 

5. The steady equilibrium state of model (3.1) 
Having established inviscid equilibrium solutions, we are now in a position to 

examine the steady-state dynamics of model (3.1) sustained by introducing energy 
into the first mode a t  the same rate as viscous dissipation. Although (3.1) is an un- 
closed system, there is an effective upper truncation limit based on a Kolmogorov’s 
length scale, beyond which the contribution of all truncated modes can safely be 
ignored ($2.2) .  I n  this section, we shall be concerned with another initial condition 
I3 = {R, = R, = 2-4, w, = w, = Q, and R, = w, = 0 for n = 3, . . ., nt}, which is an ex- 
tension of Il to the complex case. 

5.1. Free decay 

As a logical intermediate step, we shall investigate the free decay dynamics in the 
absence of an energy input ( E ~  = 0). We have evolved system (3.1) truncated a t  
n, = 6 from the initial condition I3 under v = 1 x But figure 11 presents only 
J, and w, for n = 1, 3, and 6, for the others behave similarly. First, J3 and J6 build up 
rapidly from the initial zero due t o  the nonlinear interaction, but all J, have decayed 
substantially at  the final time of figure 11 (a). A surprise here is the disappearance of 
fluctuations beyond t E 50; a major departure from the inviscid case (figure 8). The 
corresponding angles shown in figure 1 1  ( b )  also build up rapidly, but change their 
signs from plus to minus a t  t N 80. It must be pointed out that the clockwise (counter- 
clockwise) rotation is measured by the positive (negative) angle. Hence the rotating 
vectors R, exp (i2m1,) apparently change the sense of rotation, the significance of 
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FIGURE 12. Stationary dynamics of (3.1) evolved from the initial condition I, 
under nt = 6 and v = 0.02. (a) Actions. (b)  Angles. 
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which is not clear a t  present. To determine the asymptotic result, we have continued 
the evolution of w, far beyond the time range of figure 11 (b ) .  It is very surprising to 
find from figure 11 (c)  that  the w, settle down to constant values, implying that the 
rotating vectors eventually cease to rotate. Therefore, the overall picture of free decay 
is this: Initially the rotating vectors for n 3 spiral out very rapidly owing to the 
energy fed in by u, and u2, and then all rotating vectors begin to  spiral in towards the 
origin of the phase plots of Re(u,) us. Im(u,), thereby reflecting dissipation. At 
t N 80 the sense of rotation changes from clockwise to counter-clockwise directions. 
After a long time (t > 2000)) however, the rotating vectors cease to rotate; hence they 
will all shrink into the origin but without rotating around the origin of the phase space. 

It must be pointed out that v and n, used hers have been chosen arbitrarily without 
regard to ak = (q , / v3 ) i .  Although a t  the very initial instance (t N 3) the dissipation 
a k  ( N 130) can exceed the truncation a, ( = 32), it is found that a k  < a, for all t > 20, 
for a k  decreases continually due to the energy dissipation. Inasmuch as the long-time 
behaviour is concerned, therefore, the present truncation is consistent. 

5.2.  Equilibrium cascade flow of modal energies 

In free decay, the choice of v and n, was not critical because ak will eventually fall 
below a,. On the other hand, in a stationary flow the ak will approach a constant 
value; hence the consistency of truncation must be assured by d k  < a, for all t .  A]- 
though v and n, can be varied separately, we shall examine here the consequences of 
consistent and inconsistent truncations by varying v for a fixed nt. 

Consistent truncation ( a k  < a,). The model (3.1) truncated a t  n, = 6 was evolved 
from the initial condition I3 under v = 0.02. Since ef is not known a priori, the J1 was 
boosted a t  the end of each integration time step to maintain 

6 

n= 1 
J , = 1  

(Q 2.2). The numerical results are very surprising. First of all, figure 12(a) shows that 
after a rapid build-up of J, for n $ 3 from the initial zero, all J, undergo a rather 
violent oscillation, reminiscent of the inviscid solution (figure 8). Afterwards, they 
begin to settle down at t N 10 and a steady equilibrium energy state is attained at 
the final time of the figure. Second, the key information is provided by figure 12(b) 
in which the steady-state values of w, give rise to 0, = & i, k 2 for n = 1, ..., 5. This 
therefore implies that  when the energy input and dissipation are in balance the 
cascade system (3.1) evolves towards a stationary equilibrium state which is pre- 
cisely the invariant set Yo defined by (3.4). And this equilibrium state has been found 
attainable from an arbitrary initial condition with R, =l= 0 and R, + 0. 

After equilibration the energy input and dissipation rates coincide, i.e. 

ef = N 0-514. 

One then finds ak N 15.9, which is about half the truncation a,; hence the consis- 
tency of truncation is checkeb a posteriori. 

Ambivalent truncation (ak cx a,). As we repeat the computation of figure 12 but 
under a smaller v = 0.005, it turns out that ak N 43 which is somewhat larger than 
at = 32. One therefore expects that the effect of inviscid solutions would be felt 
mildly on the otherwise steady equilibrium state of Yo. In  fact, figure 13 shows the 
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FIGUHE 13. Stationary dynamics of (3.1) evolved from the initial condition 1; 
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FIQURE 14. Stationary dynamics of (3.1) evolved from the initial condition I3 under 

nt = 6 and u = 0.002. (a )  Actions for n = 1, 3 and 6. ( b )  Angles for n = 1, 3 and 6. 

same overall behaviour of J, and w, of figure 12; the main difference being persisting 
oscillations even after the initial equilibration period. 

Inconsistent truncation (ak > at). As v is further decreased, the dissipation range 
lies mostly beyond at, so that to a good measure the present problem resembles the 
inviscid flow of 9 4. This has clearly been substantiated by figure 14, which depicts 
the time histories of J, and w, for n = 1, 3, and 6, evolved under v = 0.002. Note that 
both actions (figure 14a) and angles (figure 14b) undergo a violent fluctuation; in 
particular, the fluctuating J3 and J ,  may be compared with the inviscid counterparts 
in figure 8. Consequently, the energy dissipation rate fluctuates, and so does ak in 
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the range of 57-92, which is well above a, = 32. Under the present inconsistent trun- 
cation, therefore, the equilibrium dynamics exhibit more of the chaotic motion of 
inviscid solutions than the stable motion of Yo. 

To show that v and n, play an interchangeable role, we have repeated the compu- 
tation of figure 14 but with a larger n, = 9. Although not shown here explicitly, it  
has been found that the cascade model (3.1) again evolves arbitrary initial conditions 
into the invariant set Yo just as in figure 12. This is because ak N 84 turns out much 
less than at = 256, hence the spurious effect of inviscid solutions has been suppressed 
altogether . 

6. Concluding remarks 
We have investigated the two cascade models formally derived from Burgers’ 

equation. The first model (2.9) produces no fluctuations, for its trajectory is identical 
to that of the Desnyansky-Novikov model. The second cascade model (3.1) has also 
proved unable to produce fluctuations because when truncated consistently it 
maps an arbitrary initial point into the invariant set which is the attainable phase 
space of the first model. On the other hand, when truncated inconsistently the tra- 
jectory of (3.1) develops an erratic and sporadic motion, thereby reflecting the appa- 
rently chaotic motion of inviscid energy-sharing solutions. Although (3.1) has the 
same nonlinear terms as the Kerr-Siggia model, there is a very significant difference 
between them (Siggia 1979, private communication). Unlike the natural viscous terms 
in (3.1), the Kerr-Siggia model relegates all energy dissipation to the upper 
truncation mode by an artificial eddy damping. Hence, under a stationary energy 
excitation, the Kerr-Siggia model displays the symptom of inconsistent truncation 
because the natural flow of energy has been blocked off towards the Kolmogorov dissi- 
pation range. For this reason, the emergence of temporally intermittent fluctuations 
by Kerr-Siggia model is not a faithful reflexion of cascade dynamics. Rather, it is due 
to the particular mode of energy damping imposed by that model. 

Notwithstanding, the second cascade model has a very peculiar long-time behaviour. 
The inviscid (conservative) model develops a random motion with strong tendency 
towards energy-sharing. Now, as we introduce viscosity, however small it may be, 
the trajectory loses its randomness; hence, the motion becomes laminar (stable) after 
it long evolution time. This sort of long-time behaviour contradicts an intuitive feeling 
that viscosity should not completely obliterate the random behaviour of a turbulence 
model. Whether it is just a quirk of the present cascade model or something common 
to the Navier-Stokes equations must be investigated. From the standpoint of model- 
ling, however, emergence of a stable asymptotic trajectory is not unprecedented. 
For instance, two Burgers models for a stationary channel flow have been found to 
evolve respectively into an equilibrium point in phase space (Lee 1971) and a limit 
cycle (Lee 1972), beyond the laminar-turbulent transition. This should, of course, 
be contrasted with Lorenz’s (1 963) thermal convection model developing a non- 
periodic motion around the laminar equilibrium points. 

I wish t o  thank Eric Siggia for pointing out to me the difference in his and our 
cascade model’s viscous terms and independently verifying the difference in asymp- 
totic dynamical behaviour. I also greatly benefited from the referee’s reports. 
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Appendix. Entrapment of trajectory in the invariant set Yo 
To show that D(n,) maps the initial condition I, into the invariant set Yo, it  suffices 

to consider the lowest-order case of D(2)  written in rectangular form: 
r - U r U i  --UiUr ca - -urur uiui 4- 1 2  1 2 7  ;- 1 2 -  1 2 9  

us = 2u;uf, u; = - (%;)2 + ( u p ,  (A 1) 

where u, = &+it&. The appropriate initial condition is 

{ul= ur/A), u1 = a,/At, where A = a:+a: for the arbitrary ar and ai, ug = u; = O } .  

Integration of (A 1) over a time step At yields 

U' 1 -  - u r /'A*, U: = u , / A ~ ,  U; = 2Atarai/A, U; = At(a:-a:)/A. (A 2) 

For the evolved state (A 2), we therefore have 

tan (2n01) = a,/a, and tan (2nw2) = (a: - a,2)/2arui. 

Now, beginning from tan (4nw1), we obtain the following equalities, 

2 tan (2nw1) 2a,.ai - 1  
tan (4nw1) = =--- = tan (2nw2 & in), (A 3) 

1 - tan2  no,) u: - u: - tan (2nw2) 

the first and last of which are due to the trigonometric identities. We then find from 
(A 3) that SZ, E 2w,-w2 = 5 f ;  hence the evolved state (A 2) is indeed in Yo, and 
so are the further evolved states by the definition of the invariant set. By a similar pro- 
cedure including higher-order terms in At, one can show that the trajectory of D(n,) 
is confined to the invariant set 9,. 
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